Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 739
1.
Genes Genomics ; 46(5): 613-620, 2024 May.
Article En | MEDLINE | ID: mdl-38363456

BACKGROUND: Nemaline Myopathy (NM) is a rare genetic disorder that affects muscle function and is characterized by the presence of nemaline rods in muscle fibers. These rods are abnormal structures that interfere with muscle contraction and can cause muscle weakness, respiratory distress, and other complications. NM is caused by variants in several genes, including TNNT1, which encodes the protein troponin T1. NM is inherited in an autosomal recessive pattern. The prevalence of heterozygous TNNT1 variants has been reported to be 1/152,000, indicating that the disease is relatively rare. OBJECTIVE: Investigation of TNNT1 gene variants that may cause cretin kinase elevation. METHODS: Detailed family histories and clinical data were recorded. Whole exome sequencing was performed and family segregation was done by Sanger sequencing. RESULTS: In this study, we report a 5-year-old girl with a novel variant recessive congenital TNNT1 myopathy. The patient had a novel homozygous (c.271_273del) deletion in the TNNT1 gene that is associated with creatine kinase elevation, which is a marker of muscle damage. CONCLUSION: This case expands the phenotypic spectrum of TNNT1 myopathy and highlights the importance of genetic testing and counseling for families affected by this rare disorder. In this study provides valuable insights into the genetic basis of NM and highlights the importance of early diagnosis and management for patients with this rare disorder. Further research is needed to better understand the pathophysiology of TNNT1 myopathy and to develop effective treatments for this debilitating condition.


Myopathies, Nemaline , Female , Humans , Child, Preschool , Myopathies, Nemaline/genetics , Myopathies, Nemaline/diagnosis , Creatine Kinase/genetics , Homozygote , Genetic Testing , Troponin T/genetics
2.
Gene ; 893: 147929, 2024 Jan 30.
Article En | MEDLINE | ID: mdl-38381504

Dysferlin protein deficiency can cause neuromuscular dysfunction, resulting in autosomal recessive dysferlinopathy, which is caused by DYSF gene mutation. Dysferlin proteins belongs to the Ferlin1-like protein family and are associated with muscle membrane repair and regeneration. In China, pathogenic mutations of the protein often result in two clinical phenotypes of Miyoshi muscular or limb band muscular dystrophy type 2B. It is clinically characterized by progressive muscle weakness and elevated serum creatine kinase. The data of the child were collected, blood samples of the child and his family members were collected, and whole exome sequencing (WES) was performed. The recombinant expression vector was constructed, the function of the mutation was verified by minigene, and the pathogenicity of the mutation was further analyzed by combining with biological information analysis. The patient initially presented with asymptomatic elevation of serum creatine kinase(CK). Then progressive lower limb weakness, mainly distal limb weakness. Large amounts of scattered necrosis, myogenic lesions, and complete deletion of dysferlin protein were observed under muscle biopsy, which further improved genetic detection. Whole exome sequencing showed compound mutations (c.1397 + 1_1397 + 3del and c.1375dup p.M459Nfs*15) in DYSF gene. c.1375dup p.M459Nfs*15 have been reported. The other mutation is the deletion of c.1397 + 1_1397 + 3 in Intron15, which is an intron mutation that may affect splicing and the pathogenesis is still unknown. Minigene splicing assay verified that c.1397 + 1_1397 + 3del resulted in exon15 skipping and produced a premature termination codon. We report a novel pathogenic mutation in DYSF gene with Miyoshi myopathy and demonstrate this variant causes skipping of exon15 by minigene splicing assay. We point out the need of conducting functional analysis to verify the pathogenicity of intronic mutation. The finding enriches the mutation spectrum of DYSF gene and laid a foundation for future studies on the correlation between genotype and phenotype.


Creatine Kinase , Distal Myopathies , Muscular Atrophy , Child , Humans , Dysferlin/genetics , Phenotype , Genotype , Creatine Kinase/genetics
3.
Anim Reprod Sci ; 249: 107198, 2023 Feb.
Article En | MEDLINE | ID: mdl-36791599

The soft-shelled turtle, Pelodiscus sinensis, is an important economic aquaculture species. Its reproduction exhibits seasonality; however, there is a lack of systematic studies focused on sperm maturation and epididymal storage. The testes and epididymides of P. sinensis were sampled from March to December. The seasonal reproduction and maturation of the spermatozoa were examined by anatomy, hematoxylin and eosin staining, AB-PAS staining, and immunohistochemistry. Spermatogenesis exhibited obvious seasonality in P. sinensis. It was found that the spermatogenic epithelium was most active during June to September, whereas the diameter of the epididymal tubules was smallest during June to October. As key enzymes of ATP metabolism, creatine kinases were highly expressed in the epididymal tubule epithelium during the breeding season, which may be important for the regulation of sperm maturation. In addition, the epididymal tubule epithelium changed with the season in June to September, the epididymal tubule epithelium proliferated to form villous structures, and secreted a large number of glycoproteins, which may be related to the rapid maturation of sperm during the breeding season. In conclusion, this study provided insights into the spermatogenesis of P. sinensis through histological analysis and enriched our understanding of reproduction in reptiles.


Creatine Kinase , Epididymis , Spermatogenesis , Turtles , Seasons , Male , Animals , Epididymis/cytology , Epididymis/growth & development , Epididymis/metabolism , Creatine Kinase/genetics , Creatine Kinase/metabolism , Gene Expression/physiology , Epithelium/anatomy & histology , Epithelium/growth & development
4.
Biochim Biophys Acta Mol Cell Res ; 1870(2): 119410, 2023 02.
Article En | MEDLINE | ID: mdl-36503010

Mitosis is a complicated and ordered process with high energy demands and metabolite fluxes. Cytosolic creatine kinase (CK), an enzyme involved in ATP homeostasis, has been shown to be essential to chromosome movement during mitotic anaphase in sea urchin. However, it remains elusive for the molecular mechanism underlying the recruitment of cytosolic CK by the mitotic apparatus. In this study, Fam96b/MIP18, a component of the MMXD complex with a function in Fe/S cluster supply, was identified as a brain-type CK (CKB)-binding protein. The binding of Fam96b with CKB was independent of the presence of CKB substrates and did not interfere with CKB activity. Fam96b was prone to oligomerize via the formation of intermolecular disulfide bonds, while the binding of enzymatically active CKB could modulate Fam96b oligomerization. Oligomerized Fam96b recruited CKB and the MMXD complex to associate with the mitotic spindle. Depletion of Fam96b or CKB by siRNA in the HeLa cells led to mitotic defects, which further resulted in retarded cell proliferation, increased cell death and aberrant cell cycle progression. Rescue experiments indicated that both Fam96b oligomerization and CKB activity were essential to the proper formation of mitotic spindle. These findings suggest that Fam96b may act as a scaffold protein to coordinate the supply and homeostasis of ATP and Fe/S clusters during mitosis.


Creatine Kinase , Spindle Apparatus , Humans , Adenosine Triphosphate , Brain/metabolism , Creatine Kinase/genetics , Creatine Kinase/metabolism , HeLa Cells , Spindle Apparatus/genetics , Spindle Apparatus/metabolism
5.
Yi Chuan ; 44(11): 1063-1071, 2022 Nov 20.
Article En | MEDLINE | ID: mdl-36384998

Glycogen storage disease type V is an autosomal recessive genetic disorder caused by muscle glycogen phosphorylase (PYGM) deficiency, which is characterized by exercise intolerance, second wind phenomena and high level of serum creatine kinase. In this study, we reported a Chinese young man with glycogen storage disease type V, with lower extremity weakness after exercise, increased creatine kinase, and slight fat infiltration in the posterior group of thigh muscle by magnetic resonance imaging (MRI). The proband had complex heterozygous PYGM disease-causing mutations, including c.308T>C (p.L103P) variant transmitted from the mother and c.260_261delCT (p.S87Ffs*23) from the father, of which the former was a novel PYGM mutation. This study enriched the PYGM pathogenic gene mutation spectrum, contributed to improve clinicians' understanding of glycogen storage disease type V and provided a reference for further genetic study of the disease.


Glycogen Phosphorylase, Muscle Form , Glycogen Storage Disease Type V , Humans , Male , Creatine Kinase/genetics , Genetic Testing , Glycogen Phosphorylase, Muscle Form/genetics , Glycogen Storage Disease Type V/diagnosis , Glycogen Storage Disease Type V/genetics , Glycogen Storage Disease Type V/pathology , Mutation
6.
Mol Genet Genomic Med ; 10(10): e2028, 2022 10.
Article En | MEDLINE | ID: mdl-35912688

BACKGROUND: Dystrophinopathies caused by variants in the DMD gene are a well-studied muscle disease. The most common type of variant in DMD are large deletions. Very rarely reported forms of variants are chromosomal translocations, inversions and deep intronic variants (DIVs) because they are not detectable by standard diagnostic techniques (sequencing of coding sequence, copy number variant detection). This might be the reason that some clinically and histologically proven dystrophinopathy cases remain unsolved. METHODS: We used whole genome sequencing (WGS) to screen the entire DMD gene for variants in one of two brothers suffering from typical muscular dystrophy with strongly elevated creatine kinase levels. RESULTS: Although a pathogenic DIV could not be detected, we were able to identify a pericentric inversion with breakpoints in DMD intron 44 and Xq13.3, which could be confirmed by Sanger sequencing in the index as well as in his brother and mother. As this variation affects a major part of DMD it is most likely disease causing. CONCLUSION: Our findings elucidate that WGS is capable of detecting large structural rearrangements and might be suitable for the genetic diagnostics of dystrophinopathies in the future. In particular, inversions might be a more frequent cause for dystrophinopathies as anticipated and should be considered in genetically unsolved dystrophinopathy cases.


Dystrophin , Muscular Dystrophy, Duchenne , Chromosome Inversion , Creatine Kinase/genetics , Dystrophin/genetics , Humans , Introns , Male , Muscular Dystrophy, Duchenne/diagnosis , Muscular Dystrophy, Duchenne/genetics , Whole Genome Sequencing/methods
7.
Article En | MEDLINE | ID: mdl-35598705

The genome of the unicellular molluscan parasite Perkinsus marinus contains at least five genes coding for putative creatine kinases (CK), a phosphoryl transfer enzyme which plays a key role in cellular energy transactions. Expression and kinetic analyses of three of the P. marinus CKs revealed them to be true CKs with catalytic properties in the range of typical metazoan CKs. A sequence comparison of the P. marinus CKs with a range of CK dimers and other dimeric phosphoryl transfer enzymes in this family (phosphagen kinases) showed that the P. marinus CKs lacked some of the critical residues involved in dimer stabilization, a trait all previously characterized CKs share. Size exclusion chromatography of all three expressed P. marinus CK constructs indicated they are monomeric, consistent with the observed lack of some critical dimer stabilizing residues. Phylogenetic analyses of the P. marinus CKs and putative dinoflagellate CKs with a broad range of monomeric and dimeric phosphagen kinases revealed that the Perkinsus CKs form a distinct, well-supported clade with dinoflagellate CKs which also lack the dimer stabilizing residues. Analysis of the genomic data for P. marinus showed the presence of putative genes for the two enzymes associated with creatine biosynthesis. CK in higher organisms plays a critical role in energy buffering in cell types displaying high and variable rates of ATP turnover. The presence of multiple CKs and the creatine biosynthetic pathway in P. marinus indicates that this unicellular parasite has the full complement of molecular machinery for CK-mediated energy buffering.


Alveolata , Alveolata/metabolism , Amino Acid Sequence , Animals , Creatine , Creatine Kinase/genetics , Phylogeny
8.
J Med Genet ; 59(11): 1069-1074, 2022 11.
Article En | MEDLINE | ID: mdl-35393337

BACKGROUND: Biallelic pathogenic variants in FXR1 have recently been associated with two congenital myopathy phenotypes: a severe form associated with hypotonia, long bone fractures, respiratory insufficiency and infantile death, and a milder form characterised by proximal muscle weakness with survival into adulthood. OBJECTIVE: We report eight patients from four unrelated families with biallelic pathogenic variants in exon 15 of FXR1. METHODS: Whole exome sequencing was used to detect variants in FXR1. RESULTS: Common clinical features were noted for all patients, which included proximal myopathy, normal serum creatine kinase levels and diffuse muscle atrophy with relative preservation of the quadriceps femoris muscle on muscle imaging. Additionally, some patients with FXR1-related myopathy had respiratory involvement and required bilevel positive airway pressure support. Muscle biopsy showed multi-minicores and type I fibre predominance with internalised nuclei. CONCLUSION: FXR1-related congenital myopathy is an emerging entity that is clinically recognisable. Phenotypic variability associated with variants in FXR1 can result from differences in variant location and type and is also observed between patients homozygous for the same variant, rendering specific genotype-phenotype correlations difficult. Our work broadens the phenotypic spectrum of FXR1-related congenital myopathy.


Muscular Diseases , Humans , Pedigree , Mutation , Muscular Diseases/diagnosis , Muscular Diseases/genetics , Homozygote , Creatine Kinase/genetics , RNA-Binding Proteins/genetics
9.
PLoS One ; 17(1): e0262000, 2022.
Article En | MEDLINE | ID: mdl-35077462

PURPOSE: The International Federation of Gynecology and Obstetrics (FIGO) stage remains the standard staging system for the assessment of endometrial cancer (EC) prognosis. Thus, we aim to identify the significant genes or biomarkers associated with the stage of endometrial cancer, which may also help reveal the mechanism of EC progression and assess the prognosis of patients with EC. MATERIALS AND METHODS: We compared the mRNA expression levels of EC patients with stages I and II as well as stages III and IV in the Cancer Genome Atlas (TCGA) database. The differentially expressed genes (DEGs) of EC patients at different stages were selected by volcano plot and Venn analysis. Gene Ontology (GO) and Pathways were applied to analyze the identified genes. Protein protein interaction (PPI) network was employed to identify the correlation. The survival analyses based on TCGA database were conducted for further screening. The Human Protein Atlas, quantitative PCR and immunohistochemistry were utilized to confirm the differences in expression of DEGs in endometrial cancer samples at different FIGO stages. RESULTS: CKMT1A was identified as a candidate gene. Through survival analyses, we found that CKMT1A may be a poor prognostic factor in the overall survival of endometrial cancer patients. GO and Pathways revealed that CKMT1A is closely associated with the metabolic process. More importantly, Human Protein Atlas and quantitative PCR confirmed the differences in expression of CKMT1A in endometrial cancer samples at different FIGO stages. CONCLUSION: In summary, this study shows that CKMT1A is a newly identified essential tumor progression regulator of endometrial cancer, which may give rise to novel therapeutic strategies in the management of endometrial cancer patients to prolong its prognosis and prevent tumor progression.


Biomarkers, Tumor , Creatine Kinase , Databases, Nucleic Acid , Endometrial Neoplasms , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Neoplasm Proteins , Biomarkers, Tumor/biosynthesis , Biomarkers, Tumor/genetics , Creatine Kinase/biosynthesis , Creatine Kinase/genetics , Disease-Free Survival , Endometrial Neoplasms/enzymology , Endometrial Neoplasms/genetics , Endometrial Neoplasms/mortality , Endometrial Neoplasms/pathology , Female , Humans , Middle Aged , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Neoplasm Staging , Survival Rate
10.
Article En | MEDLINE | ID: mdl-34371154

Opheline kinase (OK) is one of the phosphagen kinases (PKs) restricted to annelids, but the amino acid sequence has not been determined yet. The OK enzyme was isolated in 1966 from the polychaete Ophelia neglecta (Opheliidae) and shown to have somewhat broader activities for the various substrates opheline, lombricine and taurocyamine. To determine the OK sequence, we analyzed the RNA sequencing data for Ophelina sp. and Thoracophelia sp., belonging to Opheliidae. Four PK sequences, namely, taurocyamine kinase (TK), creatine kinase (CK), mitochondrial CK (MiCK) and putative OK, were identified in both species, and the recombinant Ophelina enzymes were expressed in E. coli and purified. Since the substrate opheline was not commercially available, we used the partial activity toward taurocyamine to infer the enzyme specificity. The putative Ophelina OK showed lower activity to taurocyamine with a Vmax/Km nearly identical to a previously published value for an OK from a related species Ophelia neglecta. Under the same conditions, the true Ophelina TK showed much higher activity. Thus, the putative Ophelina enzyme was determined to be OK. The amino acid sequence alignment indicated that Ophelina and Thoracophelia OKs have five amino acid deletions in the GS region, like those of LKs and AKs, and the guanidino substrate specific residue was Lys, the same as LKs. In the phylogenetic tree constructed from annelid PK amino acid sequences, the OK sequences formed a distinct cluster, and it was placed near the TK and lombricine kinase (LK) clusters. This is the first report of the amino acid sequence for the OK enzyme.


Annelida , Arginine Kinase , Amino Acid Sequence , Animals , Annelida/genetics , Arginine Kinase/metabolism , Creatine Kinase/genetics , Escherichia coli/metabolism , Phylogeny
11.
Respir Res ; 22(1): 190, 2021 Jul 01.
Article En | MEDLINE | ID: mdl-34210337

BACKGROUND: Hypoxia is a prominent feature of solid cancer. This research aims to expose the role of mitochondrial creatine kinase 1 (CKMT1) in non-small cell lung cancer (NSCLC) progression and hypoxia adaptation. METHODS: The mRNA and protein expression of CKMT1 in NSCLC tissues were detected by using GEPIA web, immunohistochemistry and qRT-PCR. For hypoxia, cells were exposed to the 1% O2 atmosphere. The protein levels of HIF-1α and CKMT1 in H1650 and H1299 cells exposed to hypoxia were determined by western blot. The roles of CKMT1 on the proliferation, invasion and hypoxia adaptation of NSCLC cells were measured by CCK8, colony formation and transwell assays. Luciferase activity assay and HIF1 specific inhibitor (LW6) assay indicated the related function of hypoxia and CKMT1. RESULTS: CKMT1 was highly expressed in NSCLC tissues, and the high level of CKMT1 was significantly correlated with the high pathological grade of NSCLC. Knockdown of CKMT1 inhibited the cell proliferation and invasion of H1650 and H1299 cells, which could be rescued by hypoxia. Hypoxia induced the accumulation of HIF-1α and the expression of CKMT1 in H1650 and H1299 cells. Furthermore, HIF-1 as a transcription factor of CKMT1, could up-regulated the expression of CKMT1 under hypoxia. CONCLUSIONS: In summary, CKMT1 has the potential as a target for NSCLC hypoxic targeted therapy.


Biomarkers, Tumor/biosynthesis , Carcinoma, Non-Small-Cell Lung/metabolism , Creatine Kinase/biosynthesis , Disease Progression , Lung Neoplasms/metabolism , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Hypoxia/physiology , Cell Line, Tumor , Creatine Kinase/deficiency , Creatine Kinase/genetics , Gene Knockdown Techniques/methods , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology
12.
Forensic Sci Int Genet ; 52: 102483, 2021 05.
Article En | MEDLINE | ID: mdl-33610949

mRNA markers provide a very promising method for the identification of human body fluids or tissues in the context of forensic investigations. Previous studies have shown that different body fluids can be distinguished from each other according to their specific mRNA biomarkers. In this study, we evaluated eight semen-specific mRNA markers (KLK3, NKX3-1, CKB, KLK2, PRAC1, SEMG1, TGM4, and SORD) that encompass 12 coding single nucleotide polymorphisms (cSNPs) to identify the semen contributor in a mixed stain. Five highly specific and sensitive mRNA markers for blood, menstrual blood, saliva, vaginal secretions, and skin were also incorporated into the PCR system as body fluid-positive controls. Reverse transcription polymerase chain reaction (RT-PCR), multiplex PCR and SNaPshot mini-sequencing assays were established for the identification of semen-specific mRNA. The amplicon size ranged from 133 to 337 bp. The semen-specific system was examined against blood, menstrual blood, saliva, vaginal secretions, and skin swabs. The eight mRNA biomarkers were semen-specific and could be successfully typed in laboratory-generated mixtures composed of different body fluids supplemented with 1 ng of semen cDNA. This system possessed a high sensitivity that ranged from 1:10-1:100 for detecting trace amounts of semen in semen-containing body fluid mixtures. Additionally, our results demonstrated that the cSNPs polymorphisms included in the mRNA markers were concordant with genomic DNA (gDNA). Despite the presence of other body fluids, the system exhibited high sensitivity and specificity to the semen in the mixture. In future studies, we will add other cSNPs from the semen-specific genes using massively parallel sequencing to further improve our system.


Forensic Genetics/methods , Genetic Markers , RNA, Messenger/metabolism , Semen/chemistry , Blood Chemical Analysis , Cervix Mucus/chemistry , Creatine Kinase/genetics , Electrophoresis, Capillary , Female , Homeodomain Proteins/genetics , Humans , Kallikreins/genetics , L-Iditol 2-Dehydrogenase/genetics , Male , Multiplex Polymerase Chain Reaction , Nuclear Proteins/genetics , Polymerase Chain Reaction , Polymorphism, Single Nucleotide , Prostate-Specific Antigen/genetics , Seminal Vesicle Secretory Proteins/genetics , Transcription Factors/genetics , Transglutaminases/genetics
13.
Nat Commun ; 12(1): 1041, 2021 02 15.
Article En | MEDLINE | ID: mdl-33589633

Growing evidence supports that pharmacological application of growth differentiation factor 15 (GDF15) suppresses appetite but also promotes sickness-like behaviors in rodents via GDNF family receptor α-like (GFRAL)-dependent mechanisms. Conversely, the endogenous regulation of GDF15 and its physiological effects on energy homeostasis and behavior remain elusive. Here we show, in four independent human studies that prolonged endurance exercise increases circulating GDF15 to levels otherwise only observed in pathophysiological conditions. This exercise-induced increase can be recapitulated in mice and is accompanied by increased Gdf15 expression in the liver, skeletal muscle, and heart muscle. However, whereas pharmacological GDF15 inhibits appetite and suppresses voluntary running activity via GFRAL, the physiological induction of GDF15 by exercise does not. In summary, exercise-induced circulating GDF15 correlates with the duration of endurance exercise. Yet, higher GDF15 levels after exercise are not sufficient to evoke canonical pharmacological GDF15 effects on appetite or responsible for diminishing exercise motivation.


Appetite Regulation/physiology , Exercise/physiology , Feeding Behavior/physiology , Glial Cell Line-Derived Neurotrophic Factor Receptors/genetics , Growth Differentiation Factor 15/genetics , Physical Endurance/physiology , Adult , Animals , Creatine Kinase/blood , Creatine Kinase/genetics , Gene Expression Regulation , Glial Cell Line-Derived Neurotrophic Factor Receptors/deficiency , Growth Differentiation Factor 15/blood , Growth Differentiation Factor 15/metabolism , Humans , Interleukin-10/blood , Interleukin-10/genetics , Interleukin-6/administration & dosage , Leptin/blood , Leptin/genetics , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Knockout , Motivation/physiology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Myocardium/metabolism , Physical Conditioning, Animal , Time Factors
14.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Article En | MEDLINE | ID: mdl-33547244

Inositol hexakisphosphate kinases (IP6Ks) regulate various biological processes. IP6Ks convert IP6 to pyrophosphates such as diphosphoinositol pentakisphosphate (IP7) and bis-diphosphoinositol tetrakisphosphate (IP8). IP7 is produced in mammals by a family of inositol hexakisphosphate kinases, IP6K1, IP6K2, and IP6K3, which have distinct biological functions. The inositol hexakisphosphate kinase 2 (IP6K2) controls cellular apoptosis. To explore roles for IP6K2 in brain function, we elucidated its protein interactome in mouse brain revealing a robust association of IP6K2 with creatine kinase-B (CK-B), a key enzyme in energy homeostasis. Cerebella of IP6K2-deleted mice (IP6K2-knockout [KO]) produced less phosphocreatine and ATP and generated higher levels of reactive oxygen species and protein oxidative damage. In IP6K2-KO mice, mitochondrial dysfunction was associated with impaired expression of the cytochrome-c1 subunit of complex III of the electron transport chain. We reversed some of these effects by combined treatment with N-acetylcysteine and phosphocreatine. These findings establish a role for IP6K2-CK-B interaction in energy homeostasis associated with neuroprotection.


Creatine Kinase/genetics , Energy Metabolism/genetics , Phosphotransferases (Phosphate Group Acceptor)/genetics , Acetylcysteine/metabolism , Adenosine Triphosphate/biosynthesis , Animals , Apoptosis/genetics , Cytochromes c1/genetics , Electron Transport Complex III/genetics , Humans , Mice , Mice, Knockout , Mitochondria/genetics , Mitochondria/pathology , Phosphocreatine/biosynthesis
15.
Am J Phys Med Rehabil ; 100(7): e101-e103, 2021 07 01.
Article En | MEDLINE | ID: mdl-33002912

ABSTRACT: Idiopathic hyperckemia has been described as persistent serum creatine kinase elevation at least 1.5 times the upper limit of normal in individuals with otherwise normal laboratory findings and neurological examination. This type of hyperckemia encompasses both sporadic and familial cases, which have been found to be asymptomatic or subclinical, presenting with mild symptoms, such as myalgias or cramps. Genetic causes of hyperckemia have been rarely described. The authors aim to describe a benign autosomal dominant condition caused by a rare mutation in the caveolin gene. Caveolin gene encodes for structural membrane proteins in muscle. The purpose of this article was to discuss the presentation, pathophysiology, and diagnosis of familial hyperckemia secondary to a relatively unknown mutation in caveolin-3 gene.


Caveolin 3/genetics , Creatine Kinase/blood , Creatine Kinase/genetics , Membrane Proteins/genetics , Neuromuscular Diseases/genetics , Adolescent , Humans , Hypertrophy , Leg , Male , Mutation
16.
Am J Med Genet A ; 185(2): 500-507, 2021 02.
Article En | MEDLINE | ID: mdl-33300687

Current rhabdomyolysis treatment guidelines vary based on the etiology and diagnosis, yet many cases evade conclusive diagnosis. In these cases, treatment options remain largely limited to fluids and supportive therapy. We present two cases of acute rhabdomyolysis diagnosed in the emergency department: a 5-year-old boy with sudden onset bilateral flank pain, and a 13-year-old boy with 2-3 days of worsening pectoral and shoulder pain. Each patient had a prior similar episode requiring hospitalization in the past. The 5-year-old had no inciting trauma or trigger, medication use, or illness. The 13-year-old previously had an upper respiratory infection during the week prior and had been strenuously exercising at the time of onset. Genetic testing results were unknown for both patients during their hospitalizations, and insurance and other barriers led to delay. Later results for the first patient revealed a heterozygous deletion in intron 19 on the LPIN1 gene interpreted as a variant of unknown significance. During their hospitalizations, both children were started on intravenous (i.v.) fluids, and creatine kinase (CK) initially trended downward, but then began to rise or plateau. After reviewing the cases, prior literature, and anecdotal evidence of benefit from corticosteroid therapy in rhabdomyolysis with our consultant metabolic physicians, dexamethasone was initiated. In both patients, dexamethasone use correlated with relief of patient symptoms, significantly decreased CK value, and our ability to discharge these patients home quickly. Our cases, discussion, and literature review all lead to the consideration of the use of dexamethasone in conjunction with standard therapy for acute rhabdomyolysis.


Creatine Kinase/genetics , Dexamethasone/administration & dosage , Myoglobinuria/drug therapy , Phosphatidate Phosphatase/genetics , Adolescent , Adrenal Cortex Hormones/administration & dosage , Child, Preschool , Gene Deletion , Heterozygote , Humans , Male , Myoglobinuria/genetics , Myoglobinuria/pathology , Pediatrics
17.
Biomed Res Int ; 2020: 8396429, 2020.
Article En | MEDLINE | ID: mdl-33029525

Carrier screening of Duchenne muscular dystrophy (DMD) has not been widely evaluated. To identify definite DMD female carriers prior to or in early pregnancy, we studied a large population of reproductive age females and provided informed reproductive options to DMD carriers. 37268 females were recruited from the Hangzhou Family Planning Publicity and Technology Guidance Station/Hangzhou Health Service Center for Children and Women, Hangzhou, China, between October 10, 2017, and December 16, 2018. CK activity was measured with follow-up serum DMD genetic testing in subjects with hyperCKemia, defined as CK > 200 U/L. The calculated upper reference limit (97.5th percentile) of serum creatine kinase (CK) for females aged 20-50 years in this study was near the reference limit recommended by the manufacturer (200 U/L), above which was defined as hyperCKemia. 427 females (1.2%) harbored initially elevated CK, among which 281 females (response rate of 65.8%) accepted CK retesting. DMD genetic testing was conducted on 62 subjects with sustained serum CK > 200 U/L and 16 females with a family history of DMD. Finally, 6 subjects were confirmed to be DMD definite carriers. The estimated DMD female carrier rate in this study was 1 : 4088 (adjusting for response rate), an underestimated rate, since only 50% to 70% of DMD female carriers manifest elevated serum CK, and carriers in this study may have been missed due to lack of follow-up or inability to detect all DMD pathogenic variants by current genetic testing.


Creatine Kinase/genetics , Genetics, Population , Molecular Diagnostic Techniques , Muscular Dystrophy, Duchenne/enzymology , Muscular Dystrophy, Duchenne/genetics , Adult , Base Sequence , Dystrophin/genetics , Female , Heterozygote , Humans , Male , Mass Screening , Middle Aged , Muscular Dystrophy, Duchenne/blood , Muscular Dystrophy, Duchenne/diagnosis , Pedigree , Young Adult
18.
Int J Biol Macromol ; 162: 11-23, 2020 Nov 01.
Article En | MEDLINE | ID: mdl-32531365

The expression and localization of different isoforms of creatine kinase in Pelodiscus sinensis (PSCK) were studied to reveal the role of PSCK isozymes (PSCK-B, PSCK-M, PSCK-S) under bacterial infection-induced immunologic stress. The computational molecular dynamics simulations predicted that PSCK-S would mostly possess a kinase function in a structural aspect when compared to PSCK-B and PSCK-M. The assay of biochemical parameters such as total superoxide dismutase (T-SOD), lactate dehydrogenase (LDH), malondialdehyde (MDA), catalase (CAT), and the content of ATP were measured along with total PSCK activity in different tissue samples under bacterial infection. The expression detections of PSCK isozymes in vitro and in vivo were overall well-matched where PSCK isozymes were expressed differently in P. sinensis tissues. The results showed that PSCK-B mostly contributes to the spleen, followed by the liver and myocardium; PSCK-M mostly contributes to the liver, followed by the myocardium and skeletal muscle, while PSCK-S contributes to the spleen and is uniquely expressed in skeletal muscle. Our study suggests that the various alterations of PSCK isozymes in tissues of P. sinensis are prone to defense the bacterial infection and blocking energetic imbalance before severe pathogenesis turned on in P. sinensis.


Bacterial Infections/enzymology , Creatine Kinase/chemistry , Protein Isoforms/chemistry , Stress, Physiological/immunology , Turtles/metabolism , Adenosine Triphosphate/metabolism , Aeromonas hydrophila/immunology , Animals , Bacterial Infections/genetics , Bacterial Infections/immunology , Bacterial Infections/metabolism , Catalase/metabolism , Creatine Kinase/genetics , Creatine Kinase/metabolism , Gene Expression Regulation/immunology , Immunohistochemistry , L-Lactate Dehydrogenase/metabolism , Liver/chemistry , Liver/enzymology , Malondialdehyde/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Myocardium/chemistry , Myocardium/enzymology , Phylogeny , Protein Isoforms/genetics , Protein Isoforms/metabolism , Sequence Analysis, Protein , Spleen/chemistry , Spleen/enzymology , Superoxide Dismutase/metabolism , Turtles/genetics , Turtles/immunology , Turtles/microbiology
19.
Nat Rev Endocrinol ; 16(8): 421-436, 2020 08.
Article En | MEDLINE | ID: mdl-32493980

Perturbations in metabolic processes are associated with diseases such as obesity, type 2 diabetes mellitus, certain infections and some cancers. A resurgence of interest in creatine biology is developing, with new insights into a diverse set of regulatory functions for creatine. This resurgence is primarily driven by technological advances in genetic engineering and metabolism as well as by the realization that this metabolite has key roles in cells beyond the muscle and brain. Herein, we highlight the latest advances in creatine biology in tissues and cell types that have historically received little attention in the field. In adipose tissue, creatine controls thermogenic respiration and loss of this metabolite impairs whole-body energy expenditure, leading to obesity. We also cover the various roles that creatine metabolism has in cancer cell survival and the function of the immune system. Renewed interest in this area has begun to showcase the therapeutic potential that lies in understanding how changes in creatine metabolism lead to metabolic disease.


Creatine/metabolism , Energy Metabolism/physiology , Homeostasis/physiology , Immunity/physiology , Neoplasms/metabolism , Adipose Tissue/metabolism , Animals , Creatine/physiology , Creatine Kinase/genetics , Gene Expression , Humans , Macrophages , Metabolic Diseases , Obesity/metabolism , T-Lymphocytes , Thermogenesis/physiology , Uncoupling Protein 1
20.
Article En | MEDLINE | ID: mdl-32470517

A gene encoding creatine kinase was identified in two cryptosporidia species, Cryptosporidium muris and C. andersonii. They were syntenic and shared 91% identity 94% identity at the amino acid level and nucleotide levels respectively. The C. muris creatine kinase was characterized biochemically and shown to phosphorylate both creatine and glycocyamine with a 20-fold greater preference for creatine. The observed catalytic turnover with creatine was kcat = 30 s-1 with a catalytic efficiency of 15.4 mM-1 s-1. These values were within the range observed for other creatine kinases. A search of all the apicomplexa genomes available on EuPathDB did not reveal any other phosphagen kinase genes raising the possibility of horizontal gene transfer. However, no definitive conclusion could be drawn regarding this hypothesis given the massive amount of gene loss in the apicomplexa species which are primarily parasitic species. The implications of a creatine kinase in the parasites' infection cycle are discussed.


Creatine Kinase/metabolism , Cryptosporidium/metabolism , Amino Acid Sequence , Creatine/metabolism , Creatine Kinase/genetics , Cryptosporidium/enzymology , Cryptosporidium/genetics , Evolution, Molecular , Gene Transfer, Horizontal , Glycine/analogs & derivatives , Glycine/metabolism , Kinetics , Magnetic Resonance Spectroscopy , Phylogeny , Sequence Alignment , Substrate Specificity
...